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Modal Analysis of Open Groove Guide

with Arbitrary Groove
Zhewang Ma, Eikichi Yamashita, Fellow, IEEE, and Shanjia

Abstract— A modal analysis method is proposed for groove

guide with arbitrary groove profile. The formulation is versatile,
efficient, and rigorous except the step approximation process

of the groove profile. Numerical results have shown excellent

agreement with previous data.

I. INTRODUCTION

G ROOVE guide was proposed more than 20 years ago and

has been considered promising as a low-loss waveguide

for use at millimeter wavelength [ 1]–[5]. More recently, a

theoretical and experimental analysis of a single V-groove

guide has been presented [4], which indicated that compared

with the rectangular-groove guide, the attenuation of the V-

groove guide is low and its rejection capability of higher

order modes is effective. The analytical technique employed in

[4] was the conforrnal mapping whose formulation was much

complicated and tedious. For arbitrarily shaped groove guides,

this method is hardly applicable.

The flexibility of the finite-element method (FEM) and the

finite-difference method (FDM) may be used to deal with

groove guides with arbitrary cross-sections. But a well-known

shortcoming of these methods is the requirement of large

computer memory and time-consuming computations. Besides,

in order to deal with the infinitely extended two open ends of

the groove guide, it is usually necessary to assume that perfect

conductor planes are placed on the two sides of the guide far

away from the groove in order to form a closed structure. Such

a pre-assumption is also necessary for the conventionally used

transverse resonance technique in analyzing the groove guides

[5] and the groove guide couplers [6].

In this letter, for the first time, a modal analysis method is

presented for arbitrarily profiled groove guides. This theory

takes into account the effect of higher order modes at all the

step discontinuities in a concise and systematic way, thus is

rigorous except the step approximation process. Moreover, the

two open ends are represented by two zero matrices whose

elements are zero, so that the above stated preassumption is

avoided. The final eigenvalue matrix is simple and no matter

how many steps there are, the size of it maintains small and

unchanged.
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Fig. 1. (a) An arbitrarily profiled groove guide and its step approximation.
(b) Application of transverse resonance conditions.

11. THEORY

Fig. 1(a) shows the cross section of an arbitrarily profiled

groove guide and its step approximation. The hybrid fields in

the guide may be expressed as a superposition of the LSE

and LSM modes with respect to the z-direction (i.e., the

TE and TM modes with respect to the y-direction) [3], [7].

We consider that the LSE and LSM modes propagate in the

transverse direction and couple each other at discontinuities

of various vertical planes. The hybrid modes as waveguide

fields are fortned as a result of repeated reflections of the LSE

and LSM mode waves at the left and right ends and the step

discontinuities. From this point of view, the scattering matrices

of individual step junctions are derived by using the mode-

matching method, and the overall scattering matrix of the

cascaded discontinuities is obtained by using the well-known

generalized scattering matrix technique [8].

Out of uniform sections forming the series of step disconti-

nuities, we choose an arbitrary one, and use S(L) and S(’) to

indicate the overall scattering matrices of the cascaded discon-

tinuities on its left and right side, respectively, as indicated in

Fig. l(b). The forward and backward wave amplitude column

vectors in the left, internal,

respectively,

AIL) = ~@)~(L)&) >

A(fi~) = ~(~~)~((~~) ,

and right sections ‘are related

A(R) = ~(@~(~)#~) ,

by,

(1)

(2)

where D(L), ~(~) and D(h~) are diagonal matrices with

diagonal elements Dnn = e–~ ‘g ‘“ 1. Substituting (1) and (2)
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Fig. 2. Comparison between measured and theoretical values of the cutoff

wavelength A. for groove guides of various cross sections; (1) a = a’ +-40

mm, Zr=20mm, (2)a=a’ +20mm, b=20 mm.

into the scattering matrix expressions of S(LJ and S(R), the

amplitude column vectors A(L), 13(~), A(R), 13(R), A(Lf),

and A’LL1), may be eliminated and a linear simultaneous

equations of ~(fi~) and B’(~) are obtained. Its determinant

should vanish for the existence of nontrivial solutions, so that

the eigenvalue equation is derived. In the case of a groove

guide, the left and right end extend to infinity, and the diagonal

matrices, D(L) and D(R), representing wave reflections at

the two end boundaries become zero matrices whose matrix

elements are zero, so that the final eigenvalue equation is much

simplified as

Det G = O, G = 1 – S@@f)S~)ll(M/ (3)

This process is similar to that of a recent paper [9] ‘for

the analysis of MMIC transmission line characteristics, but

one main different point is that, in our treatment of the

cascaded discontinuities, all the amplitude coefficients are

normalized so that the elements of the final scattering matrices,

S(LI and S(R), are of order 1, and the eigenvalue matrix

G is diagonal dominant. This property makes the numerical

calculation process quite stable and greatly eases the root

searching process for the eigenvalues.

III. NUMERICAL RESULTS

In Fig. 2, the cutoff wavelengths for rectangular-groove

guicles of two dimensions are provided, and a better agreement

has been shown between our theory and the carefully measured

data than that of the first-order approximation theory of

Nakahara and Kurauchi [4].

Table I shows the comparison between the theoretical and

experimental guide wavelengths of various V-groove guides

TABLE I
GUIOE WAVELENGTH AO = 3.117 mm (b = a – a’)

Guide Theoretical Experimental % of

Dimensions Calculations Results [4] Error

a‘ (mm) a (mm) Ag (mm) Ag (mm)

10 14 3.153 3.156 0.09

10 18 3.142 3.146 0.13

10 22 3.133 3.136 0.10

12 16 3.143 3.146 0.10

12 20 3.137 3.138 0.03

12 24 3.131 3.130 0.03
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Fig. 3. Gnide wavelengths versus frequency in X-band for various groove

profiles; a = 165 mm, a’ = 75 mm, b = 45 mm.

at 100 GHz. We found that the correlation is quite good with

errors of about 0.1 Yo.

Finally, dispersion curves for various groove profiles are

compared in Fig. 3. Experimental and calculated results of

[4] are also plotted for the V-groove guide. Since a movable

short-circuited plunger was used at 100 GHz, errors duo to

the coupling holes of the end plates were removed. Therefore,

the discrepancy between the predicted and measured guide

wavelength is significantly higher in X-band than that at 100

GHz [4].

On the other hand, we can see that the effect of the

groove profile on the dispersion characteristics is very small.

It means that during the fabrication of desired groove guides

the demand for dimensional tolerances is not high. This is

particularly advantageous over other transmission lines at

millimeter wavelength.

And also because of this, a rough step approximation for an

arbitrarily shaped grooved guide may yield results with high

accuracy. For the V-grooved guide in our computation, we

find that the error between the result for a 5-step division and

that for a 10-step division is within 1Yo.

For the correct convergence of numerical results, modes in

every subregions are retained according to the ratios between
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the subregion heights. This is a commonly used technique in

the mode-matching method. Fast convergence is found by the

present technique, and 3 LSE and 3 LSM modes in the two

end guides, respectively, are adequate for obtaining converging

results.

IV. CONCLUSION

A versatile and efficient modal analysis method for arbitrar-

ily profiled groove guides has been proposed and checked by

numerical examples. Further applications of this approach to

double-grooved guides, dielectric loaded groove guides, and to

the design of broad-band groove guide coupler is undergoing.
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