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Modal Analysis of Open Groove Guide
with Arbitrary Groove Profile

Zhewang Ma, Eikichi Yamashita, Fellow, IEEE, and Shanjia Xu, Senior Member. IEEE

Abstract— A modal analysis method is proposed for groove

guide with arbitrary groove profile. The formulation is versatile,
efficient, and rigorous except the step approximation process
of the groove profile. Numerical results have shown excellent
agreement with previous data.

1. INTRODUCTION

ROOVE guide was proposed more than 20 years ago and

has been considered promising as a low-loss waveguide
for use at millimeter wavelength [1]-[5]. More recently, a
theoretical and experimental analysis of a single V-groove
guide has been presented [4], which indicated that compared
with the rectangular-groove guide, the attenuation of the V-
groove guide is low and its rejection capability of higher
order modes is effective. The analytical technique employed in
[4] was the conformal mapping whose formulation was much
complicated and tedious. For arbitrarily shaped groove guides,
this method is hardly applicable.

The flexibility of the finite-element method (FEM) and the
finite-difference method (FDM) may be used to deal with
groove guides with arbitrary cross-sections. But a well-known
shortcoming of these methods is the requirement of large
computer memory and time-consuming computations. Besides,
in order to deal with the infinitely extended two open ends of
the groove guide, it is usually necessary to assume that perfect
conductor planes are placed on the two sides of the guide far
away from the groove in order to form a closed structure. Such
a pre-assumption is also necessary for the conventionally used
transverse resonance technique in analyzing the groove guides
[5] and the groove guide couplers [6].

In this letter, for the first time, a modal analysis method is
presented for arbitrarily profiled groove guides. This theory
takes into account the effect of higher order modes at all the
step discontinuities in a concise and systematic way, thus is
rigorous except the step approximation process. Moreover, the
two open ends are represented by two zero matrices whose
elements are zero, so that the above stated preassumption is
avoided. The final eigenvalue matrix is simple and no matter
how many steps there are, the size of it maintains small and
unchanged.
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Fig. 1. (a) An arbitrarily profiled groove guide and its step approximation.

(b) Application of transverse resonance conditions.

II. THEORY

Fig. 1(a) shows the cross section of an arbitrarily profiled
groove guide and its step approximation. The hybrid fields in
the guide may be expressed as a superposition of the LSE
and LSM modes with respect to the z-direction (i.e., the
TE and TM modes with respect to the y-direction) [3], [7].
We consider that the LSE and LSM modes propagate in the
transverse direction and couple each other at discontinuities
of various vertical planes. The hybrid modes as waveguide
fields are formed as a result of repeated reflections of the LSE
and LSM mode waves at the left and right ends and the step
discontinuities. From this point of view, the scattering matrices
of individual step junctions are derived by using the mode-
matching method, and the overall scattering matrix of the
cascaded discontinuities is obtained by using the well-known
generalized scattering matrix technique [8].

Out of uniform sections forming the series of step disconti-
nuities, we choose an arbitrary one, and use S and §® 1o
indicate the overall scattering matrices of the cascaded discon-
tinuities on its left and right side, respectively, as indicated in
Fig. 1(b). The forward and backward wave amplitude column
vectors in the left, internal, and right sections are related by,
respectively,

AL = D(L)D(L)B(L), AR D(R)D(R)B(R)7 6)
A(]\/[) — D(AI)BI(Z\J)’ Al(]\f) — D(]W)B(]\/[)’ (2)

where D(L),D(R) and D™ are diagonal matrices with
diagonal elements D, = e~/*v»! Substituting (1) and (2)
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Fig. 2. Comparison between measured and theoretical values of the cutoff
wavelength M. for groove gui,des of various cross sections; (1) @ = d + 40
mm, b =20 mm, ) a = a + 20 mm, b = 20 mm.

into the scattering matrix expressions of SL) and $U)| the
amplitude column vectors A(L)7 B(L)7 A(R), B(R)7 A(M),
and A'M ), may be eliminated and a linear simultaneous
equations of B™) and B'™) are obtained. Its determinant
should vanish for the existence of nontrivial solutions, so that
the eigenvalue equation is derived. In the case of a groove
guide, the left and right end extend to infinity, and the diagonal
matrices, D@ and D(R), representing wave reflections at
the two end boundaries become zero matrices whose matrix
elements are zero, so that the final eigenvalue equation is much
simplified as

Det G=0, G=I-8LDDpMsBp™ (3

This process is similar to that of a recent paper [9] for

the analysis of MMIC transmission line characteristics, but.

one main different point is that, in our treatment of the
cascaded discontinuities, all the amplitude coefficients are
normalized so that the elements of the final scattering matrices,
S and S(R), are of order 1, and the eigenvalue matrix
G is diagonal dominant. This property makes the numerical
calculation process quite stable and greatly eases the root
searching process for the eigenvalues.

III. NUMERICAL RESULTS

In Fig. 2, the cutoff wavelengths for rectangular-groove
guides of two dimensions are provided, and a better agreement
has been shown between our theory and the carefuily measured
data than that of the first-order approximation theory of
Nakahara and Kurauchi [4].

Table I shows the comparison between the theoretical and
experimental guide wavelengths of various V-groove guides

TABLE I ,
GUIDE WAVELENGTH Ag = 3.117mm (b = a — a )
Guide Theoretical Experimental % of
Dimensions Calculations Results [4] Error
a' (mm) a (mm) Ag (mm) Ay (mm)
10 14 3.153 3.156 0.09
10 18 3.142 3.146 0.13
10 22 3.133 3.136 0.10
12 16 3.143 3.146 0.10
12 20 3.137 3.138 0.03
12 24 3.131 3.130 0.03
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Fig. 3. Guide wavelengths versus frequency in X-band for various groove

profiles; a = 165 mm, a/ =75 mm, b = 45 mm.

at 100 GHz. We found that the correlation is quite good with
errors of about 0.1%.

Finally, dispersion curves for various groove profiles are
compared in Fig. 3. Experimental and calculated results of
[4] are also plotted for the V-groove guide. Since a movable
short-circuited plunger was used at 100 GHz, errors duo to
the coupling holes of the end plates were removed. Therefore,
the discrepancy between the predicted and measured guide
wavelength is significantly higher in X-band than that at 100
GHz [4].

On the other hand, we can see that the effect of the
groove profile on the dispersion characteristics is very small.
It means that during the fabrication of desired groove guides
the demand for dimensional tolerances is not high. This is
particularly advantageous over other transmission lines at
millimeter wavelength.

And also because of this, a rough step approximation for an
arbitrarily shaped grooved guide may yield results with high
accuracy. For the V-grooved guide in our computation, we
find that the error between the result for a 5-step division and
that for a 10-step division is within 1%.

For the correct convergence of numerical results, modes in
every subregions are retained according to the ratios between
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the subregion heights. This is a commonly used technique in
the mode-matching method. Fast convergence is found by the
present technique, and 3 LSE and 3 LSM modes in the two

end guides, respectively, are adequate for obtaining converging

. results.

IV. CONCLUSION

A versatile and efficient modal analysis method for arbitrar-
ily profiled groove guides has been proposed and checked by
numerical examples. Further applications of this approach to
double-grooved guides, dielectric loaded groove guides, and to
the design of broad-band groove guide coupler is undergoing.
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